LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and computational evidence of halogen bonds involving astatine

Photo by trnavskauni from unsplash

The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide… Click to show full abstract

The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.Halogen bonding is known to get stronger with increasing halogen polarizability, but some trends of the periodic table break down for heavy elements owing to relativistic effects. Now, through distribution coefficient measurements and relativistic quantum mechanical calculations, AtI has been shown to form stronger halogen bonds than I2—meaning that astatine conforms to the trend.

Keywords: astatine; chemistry; involving astatine; experimental computational; halogen; halogen bonds

Journal Title: Nature Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.