Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5′-triphosphate and its use in the synthesis… Click to show full abstract
Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5′-triphosphate and its use in the synthesis of biomolecules require enzymes. Before their emergence, alternative energy sources, perhaps assisted by simple catalysts, must have mediated the activation of carboxylates and phosphates for condensation reactions. Here, we show that the chemical energy inherent to isonitriles can be harnessed to activate nucleoside phosphates and carboxylic acids through catalysis by acid and 4,5-dicyanoimidazole under mild aqueous conditions. Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid–phosphoric acid anhydrides, for the synthesis of peptidyl–RNAs, peptides, RNA oligomers and primordial phospholipids. Our results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity, foreshadowing today’s encapsulated peptide–nucleic acid system. Life requires a constant supply of energy, but the energy sources that drove the transition from prebiotic chemistry to biochemistry on the early Earth are unknown. Now, a potentially prebiotic chemical activating reagent has been shown to enable the synthesis, in aqueous conditions and catalysed by small molecules, of peptides, peptidyl–RNAs, RNA oligomers and primordial phospholipids.
               
Click one of the above tabs to view related content.