LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial separation of triplet excitons drives endothermic singlet fission

Photo by genessapana from unsplash

Molecules that undergo singlet fission, converting singlet excitons into pairs of triplet excitons, have potential as photovoltaic materials. The possible advantages of endothermic singlet fission (enhanced use of photon energy… Click to show full abstract

Molecules that undergo singlet fission, converting singlet excitons into pairs of triplet excitons, have potential as photovoltaic materials. The possible advantages of endothermic singlet fission (enhanced use of photon energy and larger triplet energies for coupling with common absorbers) motivated us to assess the role of exciton delocalization in the activation of this process. Here we report the synthesis of a series of linear perylene oligomers that undergo endothermic singlet fission and have endothermicities in the range 5–10  k B T at room temperature in solution. We study these compounds using transient spectroscopy and modelling to unravel the singlet and triplet dynamics. We show that the minimal number of coupled chromophores needed to undergo endothermic singlet fission is three, which provides sufficient statistical space for triplet excitons to separate and avoid annihilation—and a subsequent fast return to the singlet state. Our data additionally suggest that torsional motion of chromophores about the molecular axis following triplet-pair separation contributes to the increase in entropy, thus lengthening the triplet lifetime in longer oligomers. Generating high-energy triplet excitons from singlet fission without excess energy loss is a critical goal for potential applications. Now it is shown that molecular chromophores that are connected covalently can harbour multiple long-lived and high-energy triplets—created from one photon—only if more than two chromophoric units are present and they have sufficient flexibility to isolate the excitations upon torsional motion.

Keywords: singlet fission; triplet; endothermic singlet; triplet excitons; singlet

Journal Title: Nature Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.