LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Knotting a molecular strand can invert macroscopic effects of chirality

Photo from wikipedia

Transferring structural information from the nanoscale to the macroscale is a promising strategy for developing adaptive and dynamic materials. Here we demonstrate that the knotting and unknotting of a molecular… Click to show full abstract

Transferring structural information from the nanoscale to the macroscale is a promising strategy for developing adaptive and dynamic materials. Here we demonstrate that the knotting and unknotting of a molecular strand can be used to control, and even invert, the handedness of a helical organization within a liquid crystal. An oligodentate tris(2,6-pyridinedicarboxamide) strand with six point-chiral centres folds into an overhand knot of single handedness upon coordination to lanthanide ions, both in isotropic solutions and in liquid crystals. In achiral liquid crystals, dopant knotted and unknotted strands induce supramolecular helical organizations of opposite handedness, with dynamic switching achievable through in situ knotting and unknotting events. Tying the molecular knot transmits information regarding asymmetry across length scales, from Euclidean point chirality (constitutional chirality) via molecular entanglement (conformation) to liquid-crystal (centimetre-scale) chirality. The magnitude of the effect induced by the tying of the molecular knots is similar to that famously used to rotate a glass rod on the surface of a liquid crystal by synthetic molecular motors. Reversible nanoscale knotting and unknotting of a molecular strand can be used to control the handedness of helical organizations at macroscopic length scales. Dopant knotted and unknotted strands induce supramolecular helical structures of opposite handedness in achiral liquid crystals, and the left- and right-handed forms can be switched in situ.

Keywords: chirality; liquid crystals; liquid crystal; knotting unknotting; molecular strand

Journal Title: Nature Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.