LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives

Photo by hassaanhre from unsplash

Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular… Click to show full abstract

Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein–CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our ‘CPP-additive technique’ in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering. Robust delivery of proteins into cells is challenging, but it has now been shown that by conjugating arginine-rich cell-penetrating peptides to the surface of cells, proteins containing a cell-penetrating peptide can be delivered efficiently into them. Using a thiol-reactive cell-penetrating peptide enables thiol-containing proteins to be delivered by simple co-incubation.

Keywords: peptide additives; penetrating peptide; cell penetrating; cell surface; cell; cellular uptake

Journal Title: Nature Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.