LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design

Photo from wikipedia

Orthogonal (O) ribosome-mediated translation of O-mRNAs enables the incorporation of up to three distinct non-canonical amino acids (ncAAs) into proteins in Escherichia coli (E. coli). However, the general and efficient… Click to show full abstract

Orthogonal (O) ribosome-mediated translation of O-mRNAs enables the incorporation of up to three distinct non-canonical amino acids (ncAAs) into proteins in Escherichia coli (E. coli). However, the general and efficient incorporation of multiple distinct ncAAs by O-ribosomes requires scalable strategies for both creating efficiently and specifically translated O-mRNAs, and the compact expression of multiple O-aminoacyl-tRNA synthetase (O-aaRS)/O-tRNA pairs. We automate the discovery of O-mRNAs that lead to up to 40 times more protein, and are up to 50-fold more orthogonal, than previous O-mRNAs; protein yields from our O-mRNAs match or exceed those from wild-type mRNAs. These advances enable a 33-fold increase in yield for incorporating three distinct ncAAs. We automate the creation of operons for O-tRNA genes, and develop operons for O-aaRS genes. Combining our advances creates a 68-codon, 24-amino-acid genetic code to efficiently incorporate four distinct ncAAs into a single protein in response to four distinct quadruplet codons. Non-canonical amino acids can be incorporated into proteins through translation of orthogonal mRNAs. Now, automating the design of orthogonal mRNAs—which are more selectively and efficiently translated—in combination with compact orthogonal aminoacyl-tRNA synthetase/tRNA expression systems, enables the incorporation of four distinct non-canonical monomers via a 68-codon genetic code.

Keywords: four distinct; amino acids; non canonical; canonical amino; distinct non; genetic code

Journal Title: Nature Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.