LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting

Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their… Click to show full abstract

Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria. Triphenylphosphonium ylides (Wittig reagents) that selectively react with sulfenic acids—a pivotal post-translational cysteine modification in redox biology—are developed. This bioconjugation method enables a site-specific proteome-wide stoichiometry analysis of S-sulfenylation, and visualization of redox-dependent changes in mitochondrial cysteine oxidation and the redox-triggered generation of triphenylphosphonium for the controlled delivery of small molecules to mitochondria.

Keywords: stoichiometry analysis; chemistry; redox; site; biology; wittig reagents

Journal Title: Nature Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.