LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells

Photo from wikipedia

Electricity produced by cadmium telluride (CdTe) photovoltaic modules is the lowest-cost electricity in the solar industry, and now undercuts fossil fuel-based sources in many regions of the world. This is… Click to show full abstract

Electricity produced by cadmium telluride (CdTe) photovoltaic modules is the lowest-cost electricity in the solar industry, and now undercuts fossil fuel-based sources in many regions of the world. This is due to recent efficiency gains brought about by alloying selenium into the CdTe absorber, which has taken cell efficiency from 19.5% to its current record of 22.1%. Although the addition of selenium is known to reduce the bandgap of the absorber material, and hence increase the cell short-circuit current, this effect alone does not explain the performance improvement. Here, by means of cathodoluminescence and secondary ion mass spectrometry, we show that selenium enables higher luminescence efficiency and longer diffusion lengths in the alloyed material, indicating that selenium passivates critical defects in the bulk of the absorber layer. This passivation effect explains the record-breaking performance of selenium-alloyed CdTe devices, and provides a route for further efficiency improvement that can result in even lower costs for solar-generated electricity.Selenium in cadmium telluride solar cells is known to allow bandgap engineering, thus enabling highly efficient devices. Here, Fiducia et al. show that selenium also plays a role in passivating defects in the absorber layer.

Keywords: selenium alloyed; solar cells; telluride solar; cadmium telluride; highly efficient; selenium

Journal Title: Nature Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.