LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global patterns of terrestrial nitrogen and phosphorus limitation

Photo from wikipedia

Nitrogen (N) and phosphorus (P) limitation constrains the magnitude of terrestrial carbon uptake in response to elevated carbon dioxide and climate change. However, global maps of nutrient limitation are still… Click to show full abstract

Nitrogen (N) and phosphorus (P) limitation constrains the magnitude of terrestrial carbon uptake in response to elevated carbon dioxide and climate change. However, global maps of nutrient limitation are still lacking. Here we examined global N and P limitation using the ratio of site-averaged leaf N and P resorption efficiencies of the dominant species across 171 sites. We evaluated our predictions using a global database of N- and P-limitation experiments based on nutrient additions at 106 and 53 sites, respectively. Globally, we found a shift from relative P to N limitation for both higher latitudes and precipitation seasonality and lower mean annual temperature, temperature seasonality, mean annual precipitation and soil clay fraction. Excluding cropland, urban and glacial areas, we estimate that 18% of the natural terrestrial land area is significantly limited by N, whereas 43% is relatively P limited. The remaining 39% of the natural terrestrial land area could be co-limited by N and P or weakly limited by either nutrient alone. This work provides both a new framework for testing nutrient limitation and a benchmark of N and P limitation for models to constrain predictions of the terrestrial carbon sink. Spatial patterns in the phosphorus and nitrogen limitation in natural terrestrial ecosystems are reported from analysis of a global database of the resorption efficiency of nutrients by leaves.

Keywords: natural terrestrial; nitrogen phosphorus; limitation; phosphorus limitation

Journal Title: Nature Geoscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.