LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films

Photo by fabiooulucas from unsplash

Controlling ferroic orders (ferroelectricity, ferromagnetism and ferroelasticity) by optical methods is a significant challenge due to the large mismatch in energy scales between the order parameter coupling strengths and the… Click to show full abstract

Controlling ferroic orders (ferroelectricity, ferromagnetism and ferroelasticity) by optical methods is a significant challenge due to the large mismatch in energy scales between the order parameter coupling strengths and the incident photons. Here, we demonstrate an approach to manipulate multiple ferroic orders in an epitaxial mixed-phase BiFeO3 thin film at ambient temperature via laser illumination. Phase-field simulations indicate that a light-driven flexoelectric effect allows the targeted formation of ordered domains. We also achieved precise sequential laser writing and erasure of different domain patterns, which demonstrates a deterministic optical control of multiferroicity at room temperature. As ferroic orders directly influence susceptibility and conductivity in complex materials, our results not only shed light on the optical control of multiple functionalities, but also suggest possible developments for optoelectronics and related applications.The remote, non-volatile and reversible optical control of ferroic orders is challenging. Here, using laser illumination, multiple orders in epitaxial mixed-phase BiFeO3 are manipulated deterministically using a thermally driven flexoelectric effect.

Keywords: temperature; bifeo3 thin; control; optical control; ferroic orders

Journal Title: Nature Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.