LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale percolation in doped BaZrO3 for high proton mobility

Photo by grab from unsplash

Acceptor-doped barium zirconate is a promising proton-conducting oxide for various applications, for example, electrolysers, fuel cells or methane-conversion cells. Despite many experimental and theoretical investigations there is, however, only a… Click to show full abstract

Acceptor-doped barium zirconate is a promising proton-conducting oxide for various applications, for example, electrolysers, fuel cells or methane-conversion cells. Despite many experimental and theoretical investigations there is, however, only a limited understanding as to how to connect the complex microscopic proton motion and the macroscopic proton conductivity for the full range of acceptor levels, from diluted acceptors to concentrated solid solutions. Here we show that a combination of density functional theory calculations and kinetic Monte Carlo simulations enables this connection. At low concentrations, acceptors trap protons, which results in a decrease of the average proton mobility. With increasing concentration, however, acceptors form nanoscale percolation pathways with low proton migration energies, which leads to a strong increase of the proton mobility and conductivity. Comparing our simulated proton conductivities with experimental values for yttrium-doped barium zirconate yields excellent agreement. We then predict that ordered dopant structures would not only strongly enhance the proton conductivities, but would also enable one- or two-dimensional proton conduction in barium zirconate. Finally, we show how the properties of other dopants influence the proton conductivity. Although acceptor-doped barium zirconate is a promising conductor for electrolysers or fuel cells, our understanding of the relationship between proton motion and conductivity is limited. Our simulations now suggest a generic nanoscale percolation mechanism for high mobility in other oxides.

Keywords: proton mobility; barium zirconate; mobility; proton; nanoscale percolation

Journal Title: Nature Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.