LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-cation perovskites prevent carrier reflection from grain surfaces

Photo from wikipedia

The composition of perovskite has been optimized combinatorially such that it often contains six components (A x B y C 1− x − y PbX z Y 3− z )… Click to show full abstract

The composition of perovskite has been optimized combinatorially such that it often contains six components (A x B y C 1− x − y PbX z Y 3− z ) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm 2  s −1 , while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm 2  s −1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics. Methylammonium is shown to influence the crystallization process in hybrid lead halide perovskites, leading to a more homogeneous chemical distribution of caesium and formamidinium and improved charge transport between grains in multi-cation systems.

Keywords: multi cation; diffusivity; carrier; composition; grain

Journal Title: Nature Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.