LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-performance organic pseudocapacitors via molecular contortion

Photo from wikipedia

Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g−1 at… Click to show full abstract

Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g−1 at a rate of 0.5 A g−1, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g−1. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials. Pseudocapacitors exhibit charge-storage mechanisms leading to high-capacity and rapidly cycling devices. An organic system designed via molecular contortion is now shown to exhibit unprecedented electrochemical performance and stability.

Keywords: storage; via molecular; performance; molecular contortion; high performance

Journal Title: Nature Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.