LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metastable 1T′-phase group VIB transition metal dichalcogenide crystals

Photo from wikipedia

Metastable 1T′-phase transition metal dichalcogenides (1T′-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable… Click to show full abstract

Metastable 1T′-phase transition metal dichalcogenides (1T′-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T′-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T′-phase group VIB TMDs, including WS2, WSe2, MoS2, MoSe2, WS2xSe2(1−x) and MoS2xSe2(1−x). We solve the crystal structures of 1T′-WS2, -WSe2, -MoS2 and -MoSe2 with single-crystal X-ray diffraction. The as-prepared 1T′-WS2 exhibits thickness-dependent intrinsic superconductivity, showing critical transition temperatures of 8.6 K for the thickness of 90.1 nm and 5.7 K for the single layer, which we attribute to the high intrinsic carrier concentration and the semi-metallic nature of 1T′-WS2. This synthesis method will allow a more systematic investigation of the intrinsic properties of metastable TMDs. A general method for the synthesis of high-purity crystals of metastable 1T′-phase transition metal dichalcogenides is reported, providing a source of phase-engineered materials that can be used to systematically explore their intrinsic properties.

Keywords: metastable phase; phase; group vib; transition metal

Journal Title: Nature Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.