LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical control of charged carriers and excitons in atomically thin materials

Photo from wikipedia

Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1–3. The unique band structure4–7 of atomically thin transition metal dichalcogenides (TMDs) offers… Click to show full abstract

Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1–3. The unique band structure4–7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley–spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9–11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14–16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin–valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.Formation of a homogeneous two-dimensional electron gas in transition metal dichalcogenide heterostructures allows for efficient electrical control of charge carriers and excitons.

Keywords: electrical control; carriers excitons; quantum; control; thin materials; atomically thin

Journal Title: Nature Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.