LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature

Photo from wikipedia

Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials by an asymmetric exchange interaction between neighbouring spins that imposes a fixed chirality. Their small… Click to show full abstract

Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials by an asymmetric exchange interaction between neighbouring spins that imposes a fixed chirality. Their small size, together with the robustness against external perturbations, make magnetic skyrmions potential storage bits in a novel generation of memory and logic devices. To this aim, their contribution to the electrical transport properties of a device must be characterized—however, the existing demonstrations are limited to low temperatures and mainly in magnetic materials with a B20 crystal structure. Here we combine concomitant magnetic force microscopy and Hall resistivity measurements to demonstrate the electrical detection of sub-100 nm skyrmions in a multilayered thin film at room temperature. Furthermore, we detect and analyse the Hall signal of a single skyrmion, which indicates that it arises from the anomalous Hall effect with a negligible contribution from the topological Hall effect.Single magnetic skyrmions are electrically detected in magnetic multilayers at room temperature, and their main contribution to the signal, which is enhanced for tracks approaching the size of the skyrmions, comes from the anomalous—rather than topological—Hall effect.

Keywords: magnetic skyrmions; hall; electrical detection; room temperature

Journal Title: Nature Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.