LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanophotonics for light detection and ranging technology

Photo from wikipedia

Light detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and… Click to show full abstract

Light detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and unmanned aerial vehicle reconnaissance. Until recently, LiDAR has relied on light sources and detectors mounted on multiple mechanically rotating optical transmitters and receivers to cover an entire scene. Such an architecture gives rise to limitations in terms of the imaging frame rate and resolution. In this Review, we examine how novel nanophotonic platforms could overcome the hardware restrictions of existing LiDAR technologies. After briefly introducing the basic principles of LiDAR, we present the device specifications required by the industrial sector. We then review a variety of LiDAR-relevant nanophotonic approaches such as integrated photonic circuits, optical phased antenna arrays and flat optical devices based on metasurfaces. The latter have already demonstrated exceptional functional beam manipulation properties, such as active beam deflection, point-cloud generation and device integration using scalable manufacturing methods, and are expected to disrupt modern optical technologies. In the outlook, we address the upcoming physics and engineering challenges that must be overcome from the viewpoint of incorporating nanophotonic technologies into commercially viable, fast, ultrathin and lightweight LiDAR systems. This Review highlights the technological challenges linked to the application of nanophotonics for light detection and ranging (LiDAR).

Keywords: nanophotonics light; detection ranging; technology; lidar; light detection

Journal Title: Nature Nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.