Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular… Click to show full abstract
Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.
               
Click one of the above tabs to view related content.