We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense… Click to show full abstract
We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.A highly nonlinear optical response can be used to time-resolve light-induced phase transitions with few-femtosecond to sub-femtosecond accuracy, paving the way for time-resolving highly correlated many-body dynamics in strongly correlated systems with few-femtosecond accuracy.
               
Click one of the above tabs to view related content.