LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres

Photo from wikipedia

Optical soliton dynamics can cause extreme alteration of the temporal and spectral shape of a propagating light pulse. This occurs at up to kilowatt peak powers in glass-core optical fibres… Click to show full abstract

Optical soliton dynamics can cause extreme alteration of the temporal and spectral shape of a propagating light pulse. This occurs at up to kilowatt peak powers in glass-core optical fibres and at the gigawatt level in gas-filled microstructured hollow-core fibres. Here, we demonstrate optical soliton dynamics in large-core hollow capillary fibres. This enables scaling of soliton effects by several orders of magnitude to the multi-millijoule energy and terawatt peak power level. We experimentally demonstrate two key soliton effects. First, we observe self-compression to sub-cycle pulses and infer the creation of sub-femtosecond field waveforms—a route to high-power optical attosecond pulse generation. Second, we efficiently generate continuously tunable high-energy (1–16 μJ) pulses in the vacuum and deep ultraviolet (110 nm to 400 nm) through resonant dispersive-wave emission. These results promise to be the foundation of a new generation of table-top light sources for ultrafast strong-field physics and advanced spectroscopy.Optical soliton dynamics in large-core hollow capillary fibres is demonstrated. The findings enable the scaling of soliton effects by several orders of magnitude to the multi-millijoule energy and terawatt peak power levels, and open up opportunities for new-generation table-top light sources for ultrafast strong-field physics and advanced spectroscopy.

Keywords: capillary fibres; hollow capillary; energy; generation; soliton; soliton dynamics

Journal Title: Nature Photonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.