LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acceleration of relativistic beams using laser-generated terahertz pulses

Photo from wikipedia

Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a… Click to show full abstract

Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams. Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m −1 and energy gain of 10 keV are achieved.

Keywords: relativistic beams; generated terahertz; acceleration relativistic; laser generated; energy

Journal Title: Nature Photonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.