LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selection mechanism at the onset of active turbulence

Photo by clemono from unsplash

Active turbulence describes a flow regime that is erratic, and yet endowed with a characteristic length scale1. It arises in animate soft-matter systems as diverse as bacterial baths2, cell tissues3… Click to show full abstract

Active turbulence describes a flow regime that is erratic, and yet endowed with a characteristic length scale1. It arises in animate soft-matter systems as diverse as bacterial baths2, cell tissues3 and reconstituted cytoskeletal preparations4. However, the way that these turbulent dynamics emerge in active systems has so far evaded experimental scrutiny. Here, we unveil a direct route to active nematic turbulence by demonstrating that, for radially aligned unconfined textures, the characteristic length scale emerges at the early stages of the instability. We resolve two-dimensional distortions of a microtubule-based extensile system5 in space and time, and show that they can be characterized in terms of a growth rate that exhibits quadratic dependence on a dominant wavenumber. This wavelength selection mechanism is justified on the basis of a continuum model for an active nematic including viscous coupling to the adjacent fluid phase. Our findings are in line with the classical pattern-formation studies in non-active systems6, bettering our understanding of the principles of active self-organization, and providing potential perspectives for the control of biological fluids.Experiments on microtubule-based nematics, together with active gel theory, suggest that the length scale associated with active turbulence is selected at its onset—balancing activity with the stabilizing effects of nematic elasticity and geometry.

Keywords: active turbulence; selection mechanism; turbulence; mechanism onset

Journal Title: Nature Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.