LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nematic transitions in iron pnictide superconductors imaged with a quantum gas

Photo by eriic from unsplash

The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) uses an atomic Bose–Einstein condensate to measure magnetic fields emanating from solid-state samples. The quantum sensor does so with unprecedented d.c. sensitivity at… Click to show full abstract

The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) uses an atomic Bose–Einstein condensate to measure magnetic fields emanating from solid-state samples. The quantum sensor does so with unprecedented d.c. sensitivity at micrometre resolution, from room to cryogenic temperatures 1 . An additional advantage of the SQCRAMscope is the preservation of optical access to the sample so that magnetometry imaging of, for example, electron transport may be performed in concert with other imaging techniques. Here, we apply this multimodal imaging capability to the study of nematicity in iron pnictide high-temperature superconductors, where the relationship between electronic and structural symmetry breaking resulting in a nematic phase is under debate 2 . We combine the SQCRAMscope with an in situ microscope that measures optical birefringence near the surface. This enables simultaneous and spatially resolved detection of both bulk and near-surface manifestations of nematicity via transport and structural deformation channels, respectively. By performing local measurements of emergent resistivity anisotropy in iron pnictides, we observe sharp, nearly concurrent transport and structural transitions. More broadly, these measurements demonstrate the SQCRAMscope’s ability to reveal important insights into the physics of complex quantum materials. A trapped quantum gas and optical microscopy are simultaneously employed to measure the nematicity of an iron-based superconductor. This demonstrates the potential of quantum gases to be used for scanning microscopy of quantum materials.

Keywords: quantum; microscopy; iron pnictide; quantum gas; sqcramscope

Journal Title: Nature Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.