LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evidence of topological boundary modes with topological nodal-point superconductivity

Photo from wikipedia

The extension of the topological classification of band insulators to topological semimetals gave way to the topology classes of Dirac, Weyl and nodal line semimetals with their unique Fermi arc… Click to show full abstract

The extension of the topological classification of band insulators to topological semimetals gave way to the topology classes of Dirac, Weyl and nodal line semimetals with their unique Fermi arc and drum head boundary modes [1–3]. Similarly, there are several suggestions to employ the classification of topological superconductors for topological nodal superconductors with Majorana boundary modes [4–6]. Here, we show that the surface 1H termination of the transition metal dichalcogenide compound 4Hb-TaS2, in which 1T-TaS2 and 1H-TaS2 layers are interleaved, has the phenomenology of a topological nodal point superconductor. We find in scanning tunneling spectroscopy a residual density of states within the superconducting gap. An exponentially decaying bound mode is imaged within the superconducting gap along the boundaries of the exposed 1H layer characteristic of a gapless Majorana edge mode. The anisotropic nature of the localization length of the edge mode aims towards topological nodal superconductivity. A zero-bias conductance peak is further imaged within fairly isotropic vortex cores. All our observations are accommodated by a theoretical model of a two-dimensional nodal Weyl-like superconducting state, which ensues from inter-orbital Cooper pairing. The observation of an intrinsic topological nodal superconductivity in a layered material will pave the way for further studies of Majorana edge modes and its applications in quantum information processing [7–10].

Keywords: nodal point; topological nodal; boundary modes; evidence topological; superconductivity

Journal Title: Nature Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.