Chromatin remodelling factors (CHRs) typically function to alter chromatin structure. CHRs also reside in ribonucleoprotein complexes, but little is known about their RNA-related functions. Here we show that CHR2 (also… Click to show full abstract
Chromatin remodelling factors (CHRs) typically function to alter chromatin structure. CHRs also reside in ribonucleoprotein complexes, but little is known about their RNA-related functions. Here we show that CHR2 (also known as BRM), the ATPase subunit of the large switch/sucrose non-fermentable (SWI/SNF) complex, is a partner of the Microprocessor component Serrate (SE). CHR2 promotes the transcription of primary microRNA precursors (pri-miRNAs) while repressing miRNA accumulation in vivo. Direct interaction with SE is required for post-transcriptional inhibition of miRNA accumulation by CHR2 but not for its transcriptional activity. CHR2 can directly bind to and unwind pri-miRNAs and inhibit their processing, and this inhibition requires the remodelling and helicase activity of CHR2 in vitro and in vivo. Furthermore, the secondary structures of pri-miRNAs differed between wild-type Arabidopsis thaliana and chr2 mutants. We conclude that CHR2 accesses pri-miRNAs through SE and remodels their secondary structures, preventing downstream processing by DCL1 and HYL1. Our study uncovers pri-miRNAs as a substrate of CHR2, and an additional regulatory layer upstream of Microprocessor activity to control miRNA accumulation.The chromatin remodelling protein CHR2 interacts with Serrate in Arabidopsis to regulate microRNA biogenesis.
               
Click one of the above tabs to view related content.