LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient radical-based light-emitting diodes with doublet emission

Photo by ale_s_bianchi from unsplash

Organic light-emitting diodes (OLEDs)1–5, quantum-dot-based LEDs6–10, perovskite-based LEDs11–13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end… Click to show full abstract

Organic light-emitting diodes (OLEDs)1–5, quantum-dot-based LEDs6–10, perovskite-based LEDs11–13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high operational efficiencies for the technology to realise wider impact.  Here we demonstrate efficient action of radical-based OLEDs16, whose emission originates from a spin doublet, rather than a singlet or triplet exciton. While the emission process is still spin-allowed in these OLEDs, the efficiency limitations imposed by triplet excitons are circumvented for doublets. Using a luminescent radical emitter, we demonstrate an OLED with maximum external quantum efficiency of 27 per cent at a wavelength of 710 nanometres—the highest reported value for deep-red and infrared LEDs. For a standard closed-shell organic semiconductor, holes and electrons occupy the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs), respectively, and recombine to form singlet or triplet excitons. Radical emitters have a singly occupied molecular orbital (SOMO) in the ground state, giving an overall spin-1/2 doublet. If—as expected on energetic grounds—both electrons and holes occupy this SOMO level, recombination returns the system to the ground state, giving no light emission. However, in our very efficient OLEDs, we achieve selective hole injection into the HOMO and electron injection to the SOMO to form the fluorescent doublet excited state with near-unity internal quantum efficiency.Organic light-emitting devices containing radical emitters can achieve an efficiency of 27 per cent at deep-red and infrared wavelengths based on the excitation of spin doublets, rather than singlet or triplet states.

Keywords: doublet; emitting diodes; light emitting; radical based; efficiency; emission

Journal Title: Nature
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.