LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A potassium channel β-subunit couples mitochondrial electron transport to sleep

The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain’s sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections… Click to show full abstract

The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain’s sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker’s KVβ subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep—three processes implicated independently in lifespan, ageing, and degenerative disease6,12–14—are thus mechanistically connected. KVβ substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.Sleep deprivation in Drosophila elevates reactive oxygen species in sleep-promoting neurons, leading to changes in potassium currents and spiking activity and thereby connecting energy metabolism, oxidative stress, and sleep.

Keywords: potassium channel; potassium; mitochondrial electron; channel subunit

Journal Title: Nature
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.