Accumulation of trimethylation of histone H3 at lysine 4 (H3K4me3) on immune-related gene promoters underlies robust transcription during trained immunity. However, the molecular basis for this remains unknown. Here we… Click to show full abstract
Accumulation of trimethylation of histone H3 at lysine 4 (H3K4me3) on immune-related gene promoters underlies robust transcription during trained immunity. However, the molecular basis for this remains unknown. Here we show three-dimensional chromatin topology enables immune genes to engage in chromosomal contacts with a subset of long noncoding RNAs (lncRNAs) we have defined as immune gene–priming lncRNAs (IPLs). We show that the prototypical IPL, UMLILO, acts in cis to direct the WD repeat-containing protein 5 (WDR5)–mixed lineage leukemia protein 1 (MLL1) complex across the chemokine promoters, facilitating their H3K4me3 epigenetic priming. This mechanism is shared amongst several trained immune genes. Training mediated by β-glucan epigenetically reprograms immune genes by upregulating IPLs in manner dependent on nuclear factor of activated T cells. The murine chemokine topologically associating domain lacks an IPL, and the Cxcl genes are not trained. Strikingly, the insertion of UMLILO into the chemokine topologically associating domain in mouse macrophages resulted in training of Cxcl genes. This provides strong evidence that lncRNA-mediated regulation is central to the establishment of trained immunity.This study shows that immune-related genes are primed for transcription by proximal lncRNAs. One such lncRNA, UMLILO, directs the WDR5–MLL1 complex to CXCL chemokine promoters, facilitating H3K4me3 deposition.
               
Click one of the above tabs to view related content.