LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-throughput identification of human SNPs affecting regulatory element activity

Photo from wikipedia

Most of the millions of SNPs in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies (GWAS) have linked many of these SNPs to… Click to show full abstract

Most of the millions of SNPs in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies (GWAS) have linked many of these SNPs to human traits or to gene expression levels, but rarely with sufficient resolution to identify the causal SNPs. Functional screens based on reporter assays have previously been of insufficient throughput to test the vast space of SNPs for possible effects on regulatory element activity. Here we leveraged the throughput and resolution of the survey of regulatory elements (SuRE) reporter technology to survey the effect of 5.9 million SNPs, including 57% of the known common SNPs, on enhancer and promoter activity. We identified more than 30,000 SNPs that alter the activity of putative regulatory elements, partially in a cell-type-specific manner. Integration of this dataset with GWAS results may help to pinpoint SNPs that underlie human traits. Application of SuRE reporter technology to survey the effect of 5.9 million SNPs in the human genome on enhancer and promoter activity identifies over 30,000 SNPs that alter the activity of putative regulatory elements.

Keywords: element activity; snps; throughput; regulatory element; activity; regulatory elements

Journal Title: Nature genetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.