Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations… Click to show full abstract
Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations or in vivo, due to limitations in currently available tools for measuring autophagy induction. Here, we describe a method to monitor autophagy by measuring phosphorylation of the protein ATG16L1. We developed and characterized a monoclonal antibody that can detect phospho-ATG16L1 endogenously in mammalian cells. Importantly, phospho-ATG16L1 is only present on newly forming autophagosomes. Therefore, its levels are not affected by prolonged stress or late-stage autophagy blocks, which can confound autophagy analysis. Moreover, we show that ATG16L1 phosphorylation is a conserved signaling pathway activated by numerous autophagy-inducing stressors. The described antibody is suitable for western blot, immunofluorescence and immunohistochemistry, and measured phospho-ATG16L1 levels directly correspond to autophagy rates. Taken together, this phospho-antibody represents an exciting tool to study autophagy induction. A new method of autophagy measurement is based on the detection of phospho-ATG16L1, a conserved early marker of autophagy. Sensitive detection can be achieved in multiple biological systems and assays with advantages over standard methods.
               
Click one of the above tabs to view related content.