LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification

Photo by pavelanoshin from unsplash

Neural activity exhibits complex dynamics related to various brain functions, internal states and behaviors. Understanding how neural dynamics explain specific measured behaviors requires dissociating behaviorally relevant and irrelevant dynamics, which… Click to show full abstract

Neural activity exhibits complex dynamics related to various brain functions, internal states and behaviors. Understanding how neural dynamics explain specific measured behaviors requires dissociating behaviorally relevant and irrelevant dynamics, which is not achieved with current neural dynamic models as they are learned without considering behavior. We develop preferential subspace identification (PSID), which is an algorithm that models neural activity while dissociating and prioritizing its behaviorally relevant dynamics. Modeling data in two monkeys performing three-dimensional reach and grasp tasks, PSID revealed that the behaviorally relevant dynamics are significantly lower-dimensional than otherwise implied. Moreover, PSID discovered distinct rotational dynamics that were more predictive of behavior. Furthermore, PSID more accurately learned behaviorally relevant dynamics for each joint and recording channel. Finally, modeling data in two monkeys performing saccades demonstrated the generalization of PSID across behaviors, brain regions and neural signal types. PSID provides a general new tool to reveal behaviorally relevant neural dynamics that can otherwise go unnoticed. This work develops PSID, a dynamic modeling method to dissociate and prioritize neural dynamics relevant to a given behavior.

Keywords: neural dynamics; subspace identification; preferential subspace; relevant neural; behaviorally relevant

Journal Title: Nature Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.