LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substrates

Photo from wikipedia

Renewed interest has been witnessed in utilizing the piezoelectric response of PbZr0.52Ti0.48O3 (PZT) films on glass substrates for applications such as adaptive optics. Accordingly, new methodologies are being explored to… Click to show full abstract

Renewed interest has been witnessed in utilizing the piezoelectric response of PbZr0.52Ti0.48O3 (PZT) films on glass substrates for applications such as adaptive optics. Accordingly, new methodologies are being explored to grow well-oriented PZT thin films to harvest a large piezoelectric response. However, thin film piezoelectric response is significantly reduced compared to intrinsic response due to substrate induced clamping, even when films are well-oriented. Here, a novel method is presented to grow preferentially (100)-oriented PZT films on glass substrates by utilizing crystalline nanosheets as seed layers. Furthermore, increasing the repetition frequency up to 20 Hz during pulsed laser deposition helps to tune the film microstructure to hierarchically ordered columns that leads to reduced clamping and enhanced piezoelectric response evidenced by transmission electron microscopy and analytical calculations. A large piezoelectric coefficient of 250 pm/V is observed in optimally tuned structure which is more than two times the highest reported piezoelectric response on glass. To confirm that the clamping compromises the piezoelectric response, denser films are deposited using a lower repetition frequency and a BiFeO3 buffer layer resulting in significantly reduced piezoelectric responses. This paper demonstrates a novel method for PZT integration on glass substrates without compromising the large piezoelectric response.

Keywords: films glass; response; glass substrates; large piezoelectric; piezoelectric response

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.