LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Behaviors of Condensing Clusters Based on Rayleigh Scattering Experiment

Photo from wikipedia

Condensation is a common physical process which widely exists in natural phenomena and thermal energy systems. In a condensation process, cluster is considered as the important bridge between vapor body… Click to show full abstract

Condensation is a common physical process which widely exists in natural phenomena and thermal energy systems. In a condensation process, cluster is considered as the important bridge between vapor body and condensates. However, limited by the minimum imaging dimension of traditional measurements, early experimental studies about initial stages of condensation process are not sufficient. This paper provides a powerful optical platform for the study of dynamic clusters process. Based on the Rayleigh law, optical experiments were firstly introduced to investigate the clusters spatial distribution close to and far from condensation surface. The results show that clusters are mainly generated in the vicinity of the condensation surface within the thickness of 200 μm. When they move away from the condensation surface, clusters progressively vanish and they have a life cycle of a fraction of a millisecond. Though scattering intensity is proportional to the 6th power of cluster radius r and cluster number density Nc theoretically, the scattering intensity does not increase sharply with the increase of subcooling degree from the experimental results, so we can infer that the cluster number density plays a dominate role in this process and the effect of cluster radius almost can be ignored.Zhong Lan and Di Wang contributed equally to this work.

Keywords: dynamic behaviors; condensation; process; condensation surface; based rayleigh; cluster

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.