LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient High-Power Ultrashort Pulse Compression in Self-Defocusing Bulk Media

Photo from wikipedia

Peak and average power scalability is the key feature of advancing femtosecond laser technology. Today, near-infrared light sources are capable of providing hundreds of Watts of average power. These sources,… Click to show full abstract

Peak and average power scalability is the key feature of advancing femtosecond laser technology. Today, near-infrared light sources are capable of providing hundreds of Watts of average power. These sources, however, scarcely deliver pulses shorter than 100 fs which are, for instance, highly beneficial for frequency conversion to the extreme ultraviolet or to the mid- infrared. Therefore, the development of power scalable pulse compression schemes is still an ongoing quest. This article presents the compression of 90 W average power, 190 fs pulses to 70 W, 30 fs. An increase in peak power from 18 MW to 60 MW is achieved. The compression scheme is based on cascaded phase-mismatched quadratic nonlinearities in BBO crystals. In addition to the experimental results, simulations are presented which compare spatially resolved spectra of pulses spectrally broadened in self-focusing and self-defocusing media, respectively. It is demonstrated that balancing self- defocusing and Gaussian beam convergence results in an efficient, power-scalable spectral broadening mechanism in bulk material.

Keywords: compression; average power; self defocusing; power; pulse compression

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.