LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Whole Organism Platform for Phenotype-Based Analysis of IGF1R-PI3K-Akt-Tor Action

Photo from wikipedia

Aberrant regulation of the insulin-like growth factor (IGF)/insulin (IIS)-PI3K-AKT-TOR signaling pathway is linked to major human diseases, and key components of this pathway are targets for therapeutic intervention. Current assays… Click to show full abstract

Aberrant regulation of the insulin-like growth factor (IGF)/insulin (IIS)-PI3K-AKT-TOR signaling pathway is linked to major human diseases, and key components of this pathway are targets for therapeutic intervention. Current assays are molecular target- or cell culture-based platforms. Due to the great in vivo complexities inherited in this pathway, there is an unmet need for whole organism based assays. Here we report the development of a zebrafish transgenic line, Tg(igfbp5a:GFP), which faithfully reports the mitotic action of IGF1R-PI3K-Akt-Tor signaling in epithelial cells in real-time. This platform is well suited for high-throughput assays and real-time cell cycle analysis. Using this platform, the dynamics of epithelial cell proliferation in response to low [Ca2+] stress and the distinct roles of Torc1 and Torc2 were elucidated. The availability of Tg(igfbp5a:GFP) line provides a whole organism platform for phenotype-based discovery of novel players and inhibitors in the IIS-PI3K-Akt-Tor signaling pathway.

Keywords: akt tor; platform; whole organism; pi3k akt

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.