Surface acoustic waves (SAWs) propagating on piezoelectric substrates offer a convenient, contactless approach to probing the electronic properties of low-dimensional charge carrier systems such as graphene nanoribbons (GNRs). SAWs can… Click to show full abstract
Surface acoustic waves (SAWs) propagating on piezoelectric substrates offer a convenient, contactless approach to probing the electronic properties of low-dimensional charge carrier systems such as graphene nanoribbons (GNRs). SAWs can also be used to transport and manipulate charge for applications such as metrology and quantum information. In this work, we investigate the acoustoelectric effect in GNRs, and show that an acoustoelectric current can be generated in GNRs with physical widths as small as 200 nm at room temperature. The positive current in the direction of the SAWs, which corresponds to the transportation of holes, exhibits a linear dependence on SAW intensity and frequency. This is consistent with the description of the interaction between the charge carriers in the GNRs and the piezoelectric fields associated with the SAWs being described by a relatively simple classical relaxation model. Somewhat counter-intuitively, as the GNR width is decreased, the measured acoustoelectric current increases. This is thought to be caused by an increase of the carrier mobility due to increased doping arising from damage to the GNR edges.
               
Click one of the above tabs to view related content.