LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ionic Liquids: evidence of the viscosity scale-dependence

Photo from wikipedia

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for… Click to show full abstract

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for the development of safe and sustainable energy storage systems. The competition between electrostatic and van der Waals interactions leads to a property original for pure liquids: they self-organize in fluctuating nanometric aggregates. So far, this transient structuration has escaped to direct clear-cut experimental assessment. Here, we focus on a imidazolium based IL and use particle-probe rheology to (i) catch this phenomenon and (ii) highlight an unexpected consequence: the self-diffusion coefficient of the cation shows a one order of magnitude difference depending whether it is inferred at the nanometric or at the microscopic scale. As this quantity partly drives the ionic conductivity, such a peculiar property represents a strong limiting factor to the performances of ILs-based batteries.

Keywords: scale dependence; viscosity scale; evidence viscosity; ionic liquids; liquids evidence; scale

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.