We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among… Click to show full abstract
We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize the MCP and so does the standard W state among the W-type states. We find the lower and upper bounds of the MCP and show for pure states that the lower bound, zero, is achieved if and only if the three-qubit state is biseparable or fully separable. The upper bound is achieved only for the standard GHZ state. Since the MCP is nonzero only when three-qubit entanglement exists, this quantity may be a good candidate to measure the degree of genuine tripartite entanglement.
               
Click one of the above tabs to view related content.