LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

Photo from wikipedia

A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of… Click to show full abstract

A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of it’s essential role in plant growth, the finite availability of P-rock for fertilizer production and the poor plant availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were inoculated with each of 10 selected bacteria isolated from AMF spores. Root colonization by AMF produced large plant growth responses, while seven bacterial strains further facilitated root growth and P uptake by promoting the development of AMF extraradical mycelium. Among the tested strains, Streptomyces sp. W94 produced the largest increases in uptake and translocation of 33P, while Streptomyces sp. W77 highly enhanced hyphal length specific uptake of 33P. The positive relationship between AMF-mediated P absorption and shoot P content was significantly influenced by the bacteria inoculants and such results emphasize the potential importance of managing both AMF and their microbiota for improving P acquisition by crops.

Keywords: maize plants; plant; uptake maize; growth; facilitation phosphorus

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.