Ser/Thr protein kinase (STK1) plays a critical role in cell wall biosynthesis of and drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). MRSA strains lacking STK1 become susceptible to failing cephalosporins,… Click to show full abstract
Ser/Thr protein kinase (STK1) plays a critical role in cell wall biosynthesis of and drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). MRSA strains lacking STK1 become susceptible to failing cephalosporins, such as Ceftriaxone and Cefotaxime. STK1, despite being nonessential protein for MRSA survival, it can serve as an important therapeutic agent for combination therapy. Here, we report a novel small molecule quinazoline compound, Inh2-B1, which specifically inhibits STK1 activity by directly binding to its ATP-binding catalytic domain. Functional analyses encompassing in vitro growth inhibition of MRSA, and in vivo protection studies in mice against the lethal MRSA challenge indicated that at high concentration neither Inh2-B1 nor Ceftriaxone or Cefotaxime alone was able to inhibit the growth of bacteria or protect the challenged mice. However, the growth of MRSA was inhibited, and a significant protection in mice against the bacterial challenge was observed at a micromolar concentration of Ceftriaxone or Cefotaxime in the presence of Inh2-B1. Cell-dependent minimal to no toxicity of Inh2-B1, and its abilities to down-regulate cell wall hydrolase genes and disrupt the biofilm formation of MRSA clearly indicated that Inh2-B1 serves as a therapeutically important “antibiotic-resistance-breaker,” which enhances the bactericidal activity of Ceftriaxone/Cefotaxime against highly pathogenic MRSA infection.
               
Click one of the above tabs to view related content.