LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid normal metal/ferromagnetic nanojunctions for domain wall tracking

Photo from wikipedia

Hybrid normal metal/ferromagnetic, gold/permalloy (Au/Py), nanojunctions are used to investigate magnetoresistance effects and track magnetization spatial distribution in L-shaped Py nanostructures. Transversal and longitudinal resistances are measured and compared for… Click to show full abstract

Hybrid normal metal/ferromagnetic, gold/permalloy (Au/Py), nanojunctions are used to investigate magnetoresistance effects and track magnetization spatial distribution in L-shaped Py nanostructures. Transversal and longitudinal resistances are measured and compared for both straight and 90° corner sections of the Py nanostructure. Our results demonstrate that the absolute change in resistance is larger in the case of longitudinal measurements. However, due to the small background resistance, the relative change in the transversal resistance along the straight section is several orders of magnitude larger than the analogous longitudinal variation. These results prove that hybrid nanojunctions represent a significant improvement with respect to previously studied all-ferromagnetic crosses, as they also reduce the pinning potential at the junction and allow probing the magnetization locally. In addition, unusual metastable states with longitudinal domain walls along Py straight sections are observed. Micromagnetic simulations in combination with a magnetotransport model allow interpretation of the results and identification of the observed transitions.

Keywords: metal ferromagnetic; hybrid normal; normal metal; ferromagnetic nanojunctions; nanojunctions domain

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.