LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anomalous random telegraph noise in nanoscale transistors as direct evidence of two metastable states of oxide traps

Photo by efekurnaz from unsplash

In this paper, a new pattern of anomalous random telegraph noise (RTN), named “reversal RTN” (rRTN) induced by single oxide trap, is observed in the drain current of nanoscale metal-oxide-semiconductor… Click to show full abstract

In this paper, a new pattern of anomalous random telegraph noise (RTN), named “reversal RTN” (rRTN) induced by single oxide trap, is observed in the drain current of nanoscale metal-oxide-semiconductor field-effect transistors (MOSFETs) with high-k gate dielectrics. Under each gate voltage, the rRTN data exhibit two zones with identical amplitudes but reversal time constants. This abnormal switching behavior can be explained by the theory of complete 4-state trap model (with two stable states and two metastable states), rather than the simple 2-state or improved 3-state trap model. The results provide a direct experimental evidence of the existence of two metastable states in a single oxide trap, contributing to the comprehensive understanding of trap-related reliability and variability issues in nanoscale transistors.

Keywords: random telegraph; two metastable; telegraph noise; metastable states; anomalous random; trap

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.