LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of C-terminal structure of MinC and its implication in evolution of bacterial cell division

Photo by themaker from unsplash

Proper cell division at the mid-site of Gram-negative bacteria reflects stringent regulation by the min system (MinC, MinD and MinE). Herein we report crystal structure of the C-terminal domain of… Click to show full abstract

Proper cell division at the mid-site of Gram-negative bacteria reflects stringent regulation by the min system (MinC, MinD and MinE). Herein we report crystal structure of the C-terminal domain of MinC from Escherichia coli (EcMinCCTD). The MinCCTD beta helical domain is engaged in a tight homodimer, similar to Thermotoga maritima MinCCTD (TmMinCCTD). However, both EcMinCCTD and TmMinCCTD lack an α-helix (helix3) at their C-terminal tail, in comparison to Aquifex aerolicu MinCCTD (AaMinCCTD) which forms an extra interaction interface with MinD. To understand the role of this extra binding element in MinC/MinD interactions, we fused this helix (Aahelix3) to the C-terminus of EcMinC and examined its effect on cell morphology and cell growth. Our results revealed that Aahelix3 impaired normal cell division in vivo. Furthermore, results of a co-pelleting assay and binding free energy calculation suggested that Aahelix3 plays an essential role in AaMinCD complex formation, under the circumstance of lacking MinE in A. aerolicu. Combining these results with sequence analysis of MinC and MinD in different organisms, we propose an evolutionary relationship to rationalize different mechanisms in cell division positioning in various organisms.

Keywords: mind; minc; cell division; structure; cell

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.