LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of Thermally Stable Bulk Heterojunction by Reducing the Polymer and Fullerene Intermixing

Photo from wikipedia

A morphologically stable bulk heterojunction (BHJ) with a large heterojunction area is prepared by reducing the portion of the small band gap polymer (PTB7) and fullerene intermixture through a sequential… Click to show full abstract

A morphologically stable bulk heterojunction (BHJ) with a large heterojunction area is prepared by reducing the portion of the small band gap polymer (PTB7) and fullerene intermixture through a sequential deposition (SqD) of the nanostructured PTB7 and the fullerene layer. The nanostructured PTB7 layer is prepared using a ternary solvent composed of chlorobenzene, 1,8-diiodooctane (DIO) and 1-chloronaphthalene (1-CN). Adding DIO and 1-CN enhances the ordering of PTB7 chains and results in a nanostructured polymer surface. The grazing incidence X-ray diffraction results reveal that the SqD of the nanostructured PTB7 and fullerene layers forms the BHJ with little intermixing between the polymer and the fullerene domains compared to the BHJ formed by the deposition of the blended PTB7 and fullerene solution (BSD). The OPV utilizing the SqD processed BHJ (SqD-OPV) exhibits a power conversion efficiency (PCE) of 7.43%, which is similar to that when the BSD processed BHJ (BSD-OPV) is utilized. Furthermore, the SqD-OPV exhibits an excellent thermal stability. The SqD-OPV maintains its initial PCE even after thermal annealing at 140 °C for 10 days, whereas the BSD-OPV maintains 78% of its initial efficiency under the same condition.

Keywords: ptb7 fullerene; bulk heterojunction; fullerene; stable bulk; heterojunction; polymer fullerene

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.