We report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning. To obtain the impulse response of a plasmonic lithography system, we described the field distribution of a… Click to show full abstract
We report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning. To obtain the impulse response of a plasmonic lithography system, we described the field distribution of a point dipole source generated by a metallic ridge aperture with a theoretical model using the concepts of quasi-spherical waves and surface plasmon–polaritons. We performed deconvolution to construct an exposure map of a target shape for patterning. For practical applications, we fabricated several nanoscale and microscale structures, such as a cone, microlens array, nanoneedle, and a multiscale structure using the plasmonic lithography system. We verified the possibility of applying plasmonic lithography to multiscale structuring from a few tens of nanometres to a few micrometres in the lateral dimension. We obtained a root-mean-square error of 4.7 nm between the target shape and the patterned shape, and a surface roughness of 11.5 nm.
               
Click one of the above tabs to view related content.