The pseudospin dynamics of long-living exciton-polaritons in a wedged 2D cavity has been studied theoretically accounting for the external magnetic field effect. The cavity width variation plays the role of… Click to show full abstract
The pseudospin dynamics of long-living exciton-polaritons in a wedged 2D cavity has been studied theoretically accounting for the external magnetic field effect. The cavity width variation plays the role of the artificial gravitational force acting on a massive particle: exciton-polariton. A semi-classical model of the spin-polarization dynamics of ballistically propagating exciton-polaritons has been developed. It has been shown that for the specific choice of the magnetic field magnitude and the initial polariton wave vector the polariton polarization vector tends to an attractor on the Poincaré sphere. Based on this effect, the switching of the polariton polarization in the ballistic regime has been demonstrated. The self-interference of the polariton field emitted by a point-like source has been shown to induce the formation of interference patterns.
               
Click one of the above tabs to view related content.