LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range

Photo by mbrunacr from unsplash

Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. There are however unresolved physics issues impeding optimal implementation, including estimation of dose deposition in… Click to show full abstract

Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. There are however unresolved physics issues impeding optimal implementation, including estimation of dose deposition in non-homogeneous tissue, an essential aspect of treatment optimization. Monte Carlo (MC) methods can be employed to estimate radiation profile, and whilst powerful, these are computationally expensive, limiting practicality. In this work, we start from fundamental physics in the form of the Bethe equation to yield a novel approximate analytical solution for particle range, energy and linear energy transfer (LET). The solution is given in terms of the exponential integral function with relativistic co-ordinate transform, allowing application at radiotherapeutic energy levels (50–350 MeV protons, 100–600 Mev/a.m.u carbon ions). Model results agreed closely for protons and carbon-ions (mean error within ≈1%) of literature values. Agreement was high along particle track, with some discrepancy manifesting at track-end. The model presented has applications within a charged particle radiotherapy optimization framework as a rapid method for dose and LET estimation, capable of accounting for heterogeneity in electron density and ionization potential.

Keywords: charged particles; energy; bethe equation; approximate analytical; solution; analytical solution

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.