LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Meiotic arrest with roscovitine and follicular fluid improves cytoplasmic maturation of porcine oocytes by promoting chromatin de-condensation and gene transcription

Photo by jordanmcdonald from unsplash

The developmental capacity of in vitro matured oocytes is inferior to that of the in vivo matured ones due to insufficient cytoplasmic maturation. Although great efforts were made to accomplish… Click to show full abstract

The developmental capacity of in vitro matured oocytes is inferior to that of the in vivo matured ones due to insufficient cytoplasmic maturation. Although great efforts were made to accomplish better cytoplasmic maturation by meiotic arrest maintenance (MAM) before in vitro maturation (IVM), limited progress has been achieved in various species. This study showed that MAM of porcine oocytes was better achieved with roscovitine than with dibutyryl cyclic adenosine monophosphate (db-cAMP) or 3-isobutyl-1-methylxanthine. Oocyte developmental competence after IVM was significantly improved following MAM in 199 + FF medium (TCM-199 containing 10% porcine follicular fluid and 25 µM roscovitine) to a level even higher than that in control oocytes matured without pre-MAM. Observations on other markers further confirmed the positive effects of MAM in 199 + FF on oocyte cytoplasmic maturation. During MAM culture in 199 + FF, re-decondensation (RDC) of condensed chromatin occurred, and transcription of genes beneficial to cytoplasmic maturation was evident in some of the oocytes with surrounded nucleoli (SN). However, MAM with db-cAMP neither induced RDC nor improved oocyte developmental potential. Together, the results suggest that MAM in the presence of FF and roscovitine improved the developmental competence of porcine oocytes by promoting a pre-GVBD chromatin de-condensation and expression of beneficial genes.

Keywords: cytoplasmic maturation; follicular fluid; porcine oocytes; meiotic arrest; maturation

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.