LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser

Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a… Click to show full abstract

Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization. Forward Error Correction (FEC) does not appear to be required at 14 Gbps if the SOA is maintained at 25 °C and MLL-to-SiP as well as SiP-to-SOA interface losses can be maintained below 3 dB. In semi-cooled operation with an SOA temperature below 55 °C, multi-channel operation is expected to be compatible with standard 802.3bj Reed-Solomon FEC at 14 Gbps provided interface losses are maintained below 4.5 dB. With these interface losses and some improvements to the Transmitter (Tx) and Receiver (Rx) electronics, 25 Gbps multi-channel operation is expected to be compatible with 7% overhead hard decision FEC.

Keywords: soa semiconductor; semiconductor mode; silicon photonics; budget; channel; photonics

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.