LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

White Light-Emitting Diodes Based on Individual Polymerized Carbon Nanodots

Photo from wikipedia

A search for new phosphor materials that exhibit high light-emission, spectral purity, long-time stability and processability capture particular attention to modern solid-state lighting. Here, polymerizable silane pre-functionalized carbon dot (SiCD)… Click to show full abstract

A search for new phosphor materials that exhibit high light-emission, spectral purity, long-time stability and processability capture particular attention to modern solid-state lighting. Here, polymerizable silane pre-functionalized carbon dot (SiCD) fluids were dripped and co-polymerized or completely bulk polymerized to build color conversion and encapsulation coatings of commercially available GaN blue LEDs. Most parameters of SiCD-based white LEDs were similar to or even better than those of phosphor-based white LEDs, particularly the insensitivity to excitation wavelength and working current. Thus, SiCDs were superior to those phosphors in terms of broadband properties, high transparency (no light blocking and leaking), as well as arbitrary doping of its content as color conversion and encapsulation layers simultaneously, unique solubility, flexible chemical, optical and mechanical processability. Thus, designing new CD-based white LEDs, instead of inorganic rare earth phosphor-based LEDs, is possible for better performance solid state lighting devices.

Keywords: carbon; emitting diodes; light emitting; white light; based white; white leds

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.